An Unusual Entropy Effect in the Sovolysis of some Steroidal Toluene-*p*-sulphonates

By R. BAKER,* J. HUDEC, and K. L. RABONE

(Chemistry Department, The University, Southampton SO9 5NH)

SOLVOLYSES of the axial and equatorial epimers of a number of 3-steroidal toluene-*p*-sulphonates have been studied in order tc investigate the influence of conformational transmission.¹ The axial-equatorial rate-ratio, observed to increase substantially from acetic to acetic-formic acid, was found to be associated with a change in the entropy of activation.

Axial alcohols, from which 5α -cholest-6-en- 3α -yl and 5α -cholest-7-en- 3α -yl toluene-*p*-sulphonates (III) and (V) were prepared, were most conveniently obtained by inversion of the corresponding 3β -esters [(IV) and (VI)] with tetrabutylammonium acetate in acetone.² Reduction of the acetates with lithium aluminium hydride gave alcohols which, analysed as the trimethyl silyl ethers, contained 95—98% of the 3α -epimer. Cholestan- 3α -yl and cholestan- 3β -yl toluene-*p*-sulphonates [(I) and (II)] were prepared by the usual method.

Rates of solvolysis of the pairs of axial and equatorial compounds were determined in both acetic and a 1:1 (v/v) formic-acetic acid† mixture and Arrhenius parameters obtained (Tables 1 and 2). The greater rate of solvolysis of the axial compounds in acetic acid and the greater rate increase for the axial epimers with change in solvent arises primarily from a difference in the entropy of activation. Entropies of activation associated with the equatorial epimers are negative and are little affected by the change in solvent, showing, if anything, a trend to more negative values. For the axial epimers, entropies of activation are more positive in acetic acid than those for the equatorial epimers and show a marked increase in acetic-formic acid. This effect probably originates from participation of the β axial hydrogen at the transition state. In a less nucleophilic and more dissociating solvent (acetic-formic mixture)

TABLE	
-------	--

Rate constants for the solvolysis of the toluene-p-sulphonates $(\times 10^5 \text{ sec.}^{-1}).$

		(1.		
Temp. (I)	Acetolysis			Acetolysis: formolysis		
	50° 0∙685	$74.7 \\ 16.5$	100	34.1	$51.0 \\ 64.0$	74.7
ÌÌ)		2.75	40.2		4.22	58.7
Temp.	49·9°	$75 \cdot 1$		36.9	49 ·9	73.5
(I)				9.62	60.0	
(III)	0.485	12.3		7.25	$52 \cdot 2$	
(IV)		2·14ª			2.58	34.6
(V)	0.503	4.18		2.45	17.7	
(VÍ)		1·22 ^a			1.35	17.5
s Dof 1						

[•] Ref. 1.

orbital overlap between the neighbouring carbon-hydrogen band and the developing *p*-orbital competes favourably with solvent participation. Similar entropy changes have been noted for systems considered to involve participation.³ Rate effects consistent with methyl participation were reported recently for the solvolysis of neopentyl toluene-*p*-sulphonate.⁴ No Arrhenius parameters were published but we would expect a similar trend in the ΔS^{\ddagger} values in acetic and formic acid. A contribution to the more positive entropy of activation for the axial epimers, other than by β -hydrogen participation, may be the greater degree of rotational freedom of the toluene-*p*-sulphonate group at transition than in the more sterically hindered ground state.

TABLE 2

Arrhenius parameters for solvolysis of axial and equatorial toluenep-sulphonates

	Rate ratios		ΔH^{\ddagger} (Kcal.)		ΔS^{\ddagger} (e.u.)	
	AcOH	AcOH– HCO ₂ H	AcOH	AcOH- HCO ₂ H	AcOH	AcOH– HCO ₂ H
(I) (II) (III)	6 ∙00	15.2	28.07 26.62 28.0	$27 \cdot 4$ $24 \cdot 11$ $29 \cdot 6$	$+4.35 \\ -3.19 \\ +3.65$	+11.4 -4.32 +17.9
(IV)	5.75	20.2	(27.6)	23.7	(-0.87)	-6.32
(V) (VI)	3.43	13.1	(26.2) (26.7)	$29 \cdot 7$ $23 \cdot 5$	(-4.57)	+16.0 -8.25

Products from the solvolyses (in 10:1 buffer to substrate) have been investigated by g.l.c. and mass spectroscopy. Both axial and equatorial toluene-p-sulphonates gave a substantial amount of olefin (50-70% for the equatorial epimers, ca. 90% for the axial epimers) which increased in acetic-formic acid. Some differences were noted in the elimination to substitution ratios which could be accounted for in terms of conformational transmission. Inversion: retention ratios (at the 3-position) varied considerably, but tended to be much higher for the equatorial epimers than for the axial. In formic acid, all inversion : retention ratios measured diminished. The results for the product analysis differ considerably from that obtained for the corresponding cis- and trans 4-t-butylcyclohexyl toluene-p-sulphonates, which suggests that this system is distorted and, therefore, not a suitable model for cyclohexane systems.⁵

We thank the S.R.C. for a Fellowship (to K. L. R.) and financial support.

(Received, December 30th, 1968; Com. 1810.)

† The mixed solvent was used because the toluene-p-sulphonates were almost insoluble in formic acid.

¹ R. Baker and J. Hudec, Chem. Comm., 1967, 479.

² K. L. Rabone, unpublished work.

³ A. Diaz, I. Lazdins, and S. Winstein, J. Amer. Chem. Soc., 1968, 90, 6546.

⁴ W. G. Dauben and J. L. Chitwood, J. Amer. Chem. Soc., 1968, 90, 6876.

⁵ H. Kwart and T. Takeshita, J. Amer. Chem. Soc., 1964, 86, 1161.